

Bridge Creek Fish Population Monitoring

- ~ 50,000 Juveniles Pit-tagged
- 4 Passive Instream Antennas
 - Adult Steelhead Trap

Juvenile *O.mykiss* Density (fish/100 m)

Steelhead Response to increase in beaver dams and BDAs

168% increase in abundance 52% increase in survival 172% increase in production

Barriers??'

Fish Passage

- 4 Instream Antennas
- Adult Steelhead Trap
- 78,000 PIT-tagged *O.mykiss*

2009 Pre-restoration

22 Beaver Dams

17% Passage

2016Post-restoration

164 Beaver Dams

29% Passage

BDA Projects are Young

Long-term impacts unknown?

Impairments treated by beavers

- Channel incision/disconnected floodplains
- Water storage
- Low flows (bump up surface water)
- Riparian expansion
- Habitat complexity for fish
- Habitat complexity for amphibians
- Habitat complexity for birds (e.g. sage grouse)
- Increase forage and water for cattle or wild ungulates
- Sediment storage
- Nutrient recycling

Birch Creek, ID – Restoring Perennial Flow

Restoration Goal

Restore perennial flow

Setting

- Abundant forage for beaver
- Shallow water depth high risk of predation
- Previously unsuccessful beaver translocation

Strategy

 Build BDAs to provide immediate habitat/refuge for beaver

Birch Creek, ID – Restoring Perennial Flow

- Beaver utilized BDAs
- Successful translocation
- Continued beaver activity

BDA flooded by natural beaver dam built downstream

Birch Creek, ID – Restoring Perennial Flow

BDA Response

August 3rd, 2017

August 9th, 2017

Partnership:

- WRI/SGI Funding
- Tanner Family
- Kent Sorenson (UDWR)
- USU
 - Eric Thacker, Randy Dahlgren, Terry Mesmer, Joe Wheaton
- Anabranch Solutions

Archives

Select Month

Categories

Ack An Evport

Tanner Family Improves Habitat For Cattle and Sage Grouse in Prime Habitat Area: NW Utah's Box Elder County

November 10, 2014

By Steve Stuebner (Story PDF) (Note: This story coincides

the <u>Nov. 13-</u> nternational Sage Grouse <u>um</u> in Salt Lake City)

the Tanner family's Della ch, they run about 1,000 d of Angus cattle on a mix rivate and public lands in the art of prime sage use habitat in Northwest h, due west of the Great Lake, During the summer

To Bleaving It

With Their Extended Ranching History on Utah's Dry Rangelands, the Tanner Family is Returning to USU for Lively Expertise in Holding Water Longer

<u>Utah State University Magazine – Fall 2016</u>

Maggie Creek

Recovery is the result of grazing exclusion since about 1993 and colonization of the area by beaver.

Reading the landscape... expanding the emerarld ribbon

BDA Treatments

Figures from Scott Shahverdian (Anabranch Solutions, 2017)

San Rafael- Improving Fish Habitat

(Bluehead & Flannelmouth suckers, Roundtail chub)

San Rafael- Improving Fish Habitat

Large-scale collaborative pilot

- Restore incised stream, floodplain connectivity ->
- What replaces the tamarisk?
- Increase habitat quality for endangered fish

San Rafael- Improving Fish Habitat

- Breached dams provided most complex habitat
- Stable structures # best habitat

Fish And Wildlife Habitat

Conclusions

- Small wadeable streams (where BDAs and beaver are appropriate restoration tool) make up the majority of the stream network.
- Many streams are degraded
- A lot of money spent on stream restoration
- Restoration needs to be realtively inexpensive, expansive and effective
- These approaches are flexible enough to address multiple watershed/habitat impairments

Conclusions

 We need to demonstrate if and how restoration works - MONITORING!

 Leverage financial commitments to restoration and implement as a manipulative experiment- ADAPTIVE

MANAGEMENT! (Bouwes et al. 2016)