Conserving salmon diversity in the age of Genomics

Robin Waples

NOAA Fisheries, Seattle

Key questions in conservation

1. What are the units to conserve?

2. What is their status?

Hierarchical structure of O. mykiss

Oncorhynchus mykiss Oncorhynchus mykiss irideus **Oregon Coast** Mid & N. Coast GCG **Umpqua River Basin** N. Umpqua River Resident Anadromous Summer run Winter run

The U.S. Endangered Species Act definition of "species"

Recognized species

Recognized subspecies

Distinct population segment (verts only)

NMFS species def. for salmon

A DPS must be an Evolutionarily Significant Unit

Two ESU criteria

- 1. Substantial reproductive isolation (separate)
- 2. Importance to evolutionary legacy of the species as a whole (different; unique)

Extinction is permanent because it represents loss of the genetic blueprint for a certain type of organism

Isolation

[molecular genetics]

Adaptation

[Proxies, esp. ecology, life history]

Isolation [molecular genetics] Moritz Waples 1991 1994 Dizon et al. 1992 Increasing support Crandall et al. for ESUs 2000

Adaptation

[Proxies, esp. ecology, life history]

Diversity in adult migration timing

Stream-maturing (aka stream-type, premature migrating; spring Chinook & summer steelhead)

Enter fresh water months before spawning Spawn in upper tributaries

Ocean-maturing (aka ocean-type, mature migrating; fall Chinook & winter steelhead)

Enter fresh water shortly before spawning Spawn in mainstem or lower tributaries

Classical Quantitative Genetics paradigm

Most traits are controlled by many genes of small effect

Example: many thousands of genes are associated with height in humans

Parallel/convergent evolution involves solving the same basic problem with a different mix of genes

Hierarchical structure of O. mykiss

Oncorhynchus mykiss irideus

Mid & N. Coast GCG

Umpqua River Basin

N. Umpqua River

Resident

Anadromous

local population or stock

Summer run Winter run

Isolation

[molecular genetics]

Adaptation

Genomics?

EVOLUTIONARY GENETICS

The evolutionary basis of premature migration in Pacific salmon highlights the utility of genomics for informing conservation

Daniel J. Prince,^{1,2} Sean M. O'Rourke,¹* Tasha Q. Thompson,¹* Omar A. Ali,¹ Hannah S. Lyman,¹ Ismail K. Saglam,^{1,3} Thomas J. Hotaling,⁴ Adrian P. Spidle,⁵ Michael R. Miller^{1,2†}

>200K SNPs steelhead; > 50K SNPs Chinook

- 99.99% of genes: same story
- One small part of 1 chromosome: very strong association of specific alleles vs run timing

Potential ramifications

Conventional paradigm: If an early run-time population is lost, it might be regenerated in a century from existing late-run populations

Major-effect gene paradigm: What if the only way to get an early run-time population is by having the early run-time gene?

Genomics and conservation units: The genetic basis of adult migration timing in Pacific salmonids

Waples & Lindley

Key questions

What is the distribution of genetic variants in space & time Association ≠ cause and effect

Dominance? What is phenotype of heterozygotes?

Interaction of genes and environment?

Did the early-migrating gene evolve only once?

How common are large-effect genes like this?

What procedures are already in place to conserve lifehistory diversity?

US Endangered Species Act (ESA)

Endangered species:

In danger of extinction ...

Threatened species:

Likely to become an endangered species in the foreseeable future ...

Two possible conservation scenarios

Klamath R. spring chinook are an ESU

- What about other 99.99% of the genes?
- What if other large-effect genes are found?

Klamath R. spring chinook are conserved within the larger Klamath R. ESU

- Might require listing entire ESU
- Who will conserve the genes necessary to produce the spring-run phenotype?

VIABLE SALMONID POPULATIONS

- Identify population structure within ESUs
- Assess population viability

Abundance

Productivity

Spatial structure

Diversity (genetic and life history)

Assess ESU viability

Hierarchical Viability Criteria

ESU Status SS, Div

Strata status

Pop Status

Pop **Attributes**

But ...

If a) the spring-run phenotype is lost locally

andb) the ability to produce springChinook depends on immigration

Then it might not be sufficient to conduct risk assessments independently for each ESU