IS SHIFTING CLIMATE DRIVING CHANGES IN SALMON POPULATION DYNAMICS?
January 10, 2018Kilduff DP, E Di Lorenzo, LW Botsford, and SLH Teo. 2015. Changing central Pacific El Ninos reduce stability of North American salmon survival rates. Proceedings of the North American Academy of Sciences 112:10962-10966.
In a nutshell
- Prevailing ocean conditions in the North Pacific are highly influenced by complex interactions between various meteorological phenomena expressed across vast spatial scales
- Increasing global temperatures have led to shifts in the relationships between many of these phenomena, including a reduction in the influence of the Pacific Decadal Oscillation (PDO) relative to that of the North Pacific Gyre Oscillation (NPGO) on the oceanic conditions of the North Pacific
- Evidence suggests that the population dynamics of Chinook and coho salmon, which were traditionally associated with teleconnections linked to the PDO, are now more closely linked with the NPGO, and that the population dynamics of the two species have begun to converge as a result of the physical and subsequent ecological changes in the North Pacific
- These transformations in climatic and oceanic conditions, and the subsequent response of salmon population dynamics, have important implications for salmon fisheries management and conservation
Botsford and his colleagues examined the ocean survival rates of tagged juvenile coho and Chinook salmon released from 72 and 104 hatcheries, respectively, along the west coast of North America, from central California to Alaska, between 1980 and 2006. Analysis of the data collected from the tagged salmon indicated that variability in salmon survival in the Pacific, which was largely associated with the PDO prior to the 1980s, is now more strongly associated with the NPGO. Increasing variance in the North Pacific Oscillation (NPO) – the atmospheric phenomenon that drives NPGO occurrence – has been linked to global warming; for instance, NPO activity was at its highest level yet in the winter of 2013–2014, resulting in the warmest SST anomalies ever recorded in the northeastern Pacific. Because of this link to rising atmospheric temperatures, such changes in the relative influence of the PDO and the NPGO may become more frequent and pronounced as global temperatures continue to increase.
Moreover, the researchers found that ocean survival rates of Chinook and coho salmon, which previously varied independently of one another due to considerable differences in their life histories, began to converge in the 1990s, and have become increasingly more synchronous. What specific mechanisms are driving the growing synchrony of the two populations remains unclear, but the researchers believe that it may be due to modifications in coastal food-web linkages or to undetermined changes in the salmon species themselves.
Regardless of the underlying causes, the convergence in population dynamics between the two salmon species bodes ill for commercial fisheries; given that the two populations now appear to rise and fall simultaneously, catch rates of one species may no longer function to offset low catch rates of the other. Equally problematic, the mechanisms underlying the ocean climate effect are likely to be beyond the scope of management, according to Botsford. “Something has changed in the lives of coho or Chinook salmon, and their interactions with the environment, and identification of this increase in the synchrony of ocean survivals points to something happening in the ocean. As such, it identifies an element of the loss in salmon diversity that managers are probably not going to be able to reverse by management actions in freshwater.
Science Spotlight by Ken Ferguson